Error-constant estimation under the maximum norm for linear Lagrange interpolation
نویسندگان
چکیده
Abstract For the linear Lagrange interpolation over a triangular domain, we propose an efficient algorithm to rigorously evaluate error constant under maximum norm by using finite-element method (FEM). In solving optimization problem corresponding constant, in constraint condition is most difficult part process. To handle this difficulty, novel proposed combining orthogonality of space decomposition Fujino–Morley FEM and convex-hull property Bernstein representation functions space. Numerical results for lower upper bounds triangles various types are presented verify efficiency method.
منابع مشابه
Extended Lagrange interpolation in weighted uniform norm
The author studies the uniform convergence of extended Lagrange interpolation processes based on the zeros of Generalized Laguerre polynomials. 2009 Elsevier Inc. All rights reserved.
متن کاملOn the Lebesgue constant for Lagrange interpolation on equidistant nodes
Properties of the Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that the Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover an integral expression of the Lebesgue function is also obtained. Finally, the asymptotic behavior of the Lebesgue constant is studied.
متن کاملA Hilbert transform representation of the error in Lagrange interpolation
Let Ln [f ] denote the Lagrange interpolation polynomial to a function f at the zeros of a polynomial Pn with distinct real zeros. We show that f − Ln [f ] = −PnHe [ H [f ] Pn ] , where H denotes the Hilbert transform, and He is an extension of it. We use this to prove convergence of Lagrange interpolation for certain functions analytic in (−1, 1) that are not assumed analytic in any ellipse wi...
متن کاملError Estimates for the Raviart-Thomas Interpolation Under the Maximum Angle Condition
The classical error analysis for the Raviart-Thomas interpolation on triangular elements requires the so-called regularity of the elements, or equivalently, the minimum angle condition. However, in the lowest order case, optimal order error estimates have been obtained in [1] replacing the regularity hypothesis by the maximum angle condition, which was known to be sufficient to prove estimates ...
متن کاملCo-Clustering Under the Maximum Norm
Co-clustering, that is, partitioning a numerical matrix into “homogeneous” submatrices, has many applications ranging from bioinformatics to election analysis. Many interesting variants of co-clustering are NP-hard. We focus on the basic variant of co-clustering where the homogeneity of a submatrix is defined in terms of minimizing the maximum distance between two entries. In this context, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2022
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-022-02841-w